Math 342: Abstract Algebra I

 2010-2011
Lecture 2: Elementary properties of Groups

Review

A group is a ${ }^{1}$ nonempty set together with an ${ }^{2}$ associative operation such that ${ }^{3}$ there is an identity and ${ }^{4}$ every element has an inverse, and any pair of elements can be combined ${ }^{5}$ without going outside the set.

Note:

- The associativity property let us write a composition without parentheses:

$$
a b c=a(b c)=(a b) c
$$

- For a positive integer n, we write a^{n} for the product of a taken n times.
- when n is negative, we mean $\left(a^{-1}\right)^{n}$.
- We take $a^{0}=$ e.

Every group has an identity. Could a group have more than one?

Every group element has an inverse. Could an element have more than one inverse?

Theorem 2.1 (uniqueness of the identity):

If G is a group, there is only one identity element.

We denote the identity of a group G by e.

Theorem 2.2 (Cancellation):

In a group G the right and left cancellation laws hold; that is
$\mathrm{ba}=\mathrm{ca}$ implies that $\mathrm{b}=\mathrm{c}$, and $a b=a c$ implies that $b=c$.

- As a consequence of Theorem 2.2 in Cayley table of a group each element occurs only once in each row and column, and in this case it is known as a Latin Square.

This fact comes as a corollary of the following theorem.

Theorem2.12(Nicholson's book page 120):

Let g and h be elements of a group G. Then

1. The equation $g x=h$ has a unique solution
$x=g^{-1} h$ in G.
2. The equation $\times g=h$ has a unique solution

$$
x=h g^{-1} \text { in } G .
$$

One should notice that;

If we have a cayley table in which every row and column contains every element only once, this does not imply that the system is a group.

- Another consequence of Theorem 2.2 is the uniqueness of the inverse of each group element.

Theorem 2.3 (Uniqueness of Inverses):

For each element a in a group G, there is a unique element b in G such that $a b=b a=e$.
b is denoted by a^{-1}

Theorem 2.4 (Socks- Shoes Property):

For a group elements a and b,

$$
(a b)^{-1}=b^{-1} a^{-1}
$$

